AMERICAN UNIVERSITY OF BEIRUT FACULTY OF ENGINEERING AND ARCHITECTURE MECH 230 - DYNAMICS - QUIZ 2

W. Najm J. Kasamani

NAME: ID NO. December 18, 2007

90 MINUTES CLOSED BOOK QUIZ

- 1- Solve the problems on this question booklet in the given space.
- 2- Use the scratch booklet before writing on the question booklet.
- 3- The scratch booklet will not be collected and will not be graded.
- 4- Neatness and clarity are important in grading.

PROBLEM 1: 25 %

An automobile having a mass of 1500 kg travels up a 7° slope at a constant speed of v = 90 km/h. If mechanical friction and wind resistance are neglected,

- (a) Calculate the traction force.(10 pts)
- (b) Determine the power developed by the engine if the automobile has an efficiency of ε =0.63. (15pts)

PROBLEM 2: 25%

The steel ball strikes the heavy steel plate with a velocity $v_0 = 24$ m/s at an angle of 60° with the horizontal. The coefficient of restitution is e = 0.8.

- (a) On the figure locate the line of impact and the plane of contact.(3 pts)
- (b) For the ball, draw the initial momentum diagram just before impact, impulse diagram, and the final momentum diagram just after impact. (7 pts)

(c) Calculate the velocity v and its direction θ with which the ball rebounds from the plate. (15pts)

PROBLEM 3: 25%

The spool shown in figure unravels from the cord, such that at the instant shown it has an angular velocity of 3 rad/s and an angular acceleration of 4 rad/s².

(a) Velocity Analysis: **Determine** the velocity of each of the following points: point A, point G, and point B. Give answers in vector form. (15%)

(b) Acceleration Analysis: **Determine** the acceleration of each of the following points: point A, point G, and point B. Give answers in vector form. (10%)

PROBLEM 4: 25%

Block B moves along the slot in the platform with a constant speed of 2 ft/s, measured relative to the platform in the direction shown. If the platform is rotating at a constant rate of $\omega = 5$ rad/s, determine the velocity and acceleration of the block at the instant $\theta = 60^{\circ}$.

